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CONDITIONED LIMIT THEO JMS

by

Meyer Dwass and Samuel Karlin

9 1. Introduction

1. Limit theorems for Markoff processes and suitable functionals

defined on the processes occur in two principal contexts. The first

category of applications treats a situation where the limit process is

one of the classical stable processes. The usual approximating processes

are sums of independent random variables. A second important class of

examples is that of a limit diffusion process of Bessel type

(section 2). Then the approximating processes may themselves either be

of diffusion type (i.e., random walks, birth and death or bona fide

diffusion) or processes almost of diffusion type [14, 23].

In both these cases under sufficient regularity conditions

we have an invariance principle, i.e., the convergence of the processes

entails the convergence in law of functionals continuous a.e. with

respect to the limit process.

In this paper our objective is to develop several limit laws

for random variables subject to conditioning on a recurrent event.



Such limit laws arise in a natural way in considering Kolmorogov-

Smirnov statistics, and other related statistics as follows. Consider

the Poisson process, U(t), t > 0, with stationary increments and EU(l) = 1.

The event U(n) = n for some n is a certain recurrent event (n = 1,2,...). Let

N denote the number of recurrences that have taken place up to time n.n

It is well known that

P N < t 2t e_X2 /2

lim _.a = f e dx, 0 < t < -. [20,31
n -- oo  O o

On the other hand, P(Nn = kJU(n) = n) is just the probability that

F n(x) = F(x) for k values of x where Fn is the empirical c.d.f. of

n independent random variables each distributed according to the c.d.f.,

F. It follows, in particular, from the results of this paper that

lim P N tfu =n = - e , 0<t <n -*n

[20]. Similarlylet M = max (U(t) - t), A = max IU(t) - ti.
n 0<t<n n 0<t<n

The limiting distribution of Mn/Vn , A/Jn are well known [11]. The

"conditioned" versions involve the limits,

M A
lim P=<tlU(n) , lim P( t<U(n)= n)

n -+oo n - (

These, of course, are the well known limiting distributions of the one

and two-sided Kolmogorov-Smirnov statistics, -/ D+, w/  Dn" Similarly,

instead of U(t) one considers the process Sn = X1 + ... + X n, n=l, 2, ...
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where the Xi are independent and identically distributed random variables

equaling 1 and -1 with probabilities 1/2, 1/2. If Nn = the number of

indices i for which Si = O, 1 < i < n, M = max Si,l<i<n

A = max < Si then P(N2n = kIS 2n = 0), P(M2n = kS 2a = 0),
l<i<n

P(A2n = kIS 2n = 0) are exactly the probabilities

P(Fn(x) Gn(X) for k values of x), P(max(Fn(x) - Gn(X)) = k/n),

P(maxjFn(x) - Gn(x)l = k/n)

where Fn, G are independent empirical c.d.f.'s based on observationsn

from the same population. Some of the results of this paper specialized

to this case establish limit laws for N2 n/_\n, M2/-Vi, A2 nl/Vn

under the condition that S2n = 0, thus providing new proofs of the

well-known limit laws for Kolmogorov-Smirnov statistics which arise

from the comparison of two empirical c.d.f.'s.

2. Let X(t), t > 0 be a Markoff stochastic process whose

state space is the real line. We will consider two cases. The first

is the situation where X(t) is a process of a sum of independent and

identically distributed random variables in discrete time. In this

circumstanceme adopt the traditional notation and write X(n) = S where
n

(1) SO = 0, Sn = ti + t2 + " + tn' nl i

and i are independent identically distributed. In order to obtain

nontrivial limit laws for the process S[nt] suitably normalized we will

3



assume that ft belongs to the domain of attraction of a stable law

of index a, 1 < a < 2 and E(i) = 0. It is established in [19] under

the conditions stated that the processes

(2) z(n)(t) Slnt]

n

converge to a stable process of index a (as n -4 -) and the invariance

principle holds.

Specifically, we assume that the limit process Z(n)(t) has a

distribution law whose characteristic function

log E(eixz(t), 
- KtkIa + ic 'Ltan a}

(1 <a < 2, -1 < c < 1, K > 0)

Consider now the special case where are integer valued non-lattice

random variables. The conditions 1 < a < 2 and E(ti) = 0

imply (see [ 2 ]) that the process S[nt] is null recurrent and in particular

the event Sn = 0 for some n > 1 is recurrent. Henceforth whenever dealing

with the case of (1) we assume thatthe convergence in (2) prevails and

that are integer valued non-lattice random variables.

We introduce the following random variables

(3) Mn max S, M = max Sk'Sn = 0)

0 k nk n < k <n

last
where the/notation signifies that we are considering the maximum variable

restricted to the sample paths where S = 0. (The subsequent notationn



is to be interpreted analogously.)

M+ =n max SIS > 0, k = , 2, ... ,n)
n 0<k<nkk

A = max Is ki
O<k<n

A*n = max ISk~lSn = 0)
n O<k<n

Yn = n - maxtk:Sk =0, k = 0, 1,... ,n)

Nn = Number of Sk =0 (k = 1, 2, ... ,n)

Nn = (Number of Sk =0, k = 1, ... nISn = 0)

It should be emphasized, to be precise, that the * random variables

are defined on a different measure space that the unstarred random

variables. It is proved in [ 5 ] and independently in [12] under the

hypothesis stated above that

(4) lir Pr - < u} = F1 /o1 (u)
n - o

where

sin(8 )u f 6- (1 g)-8 dt
(5) F8(u) 

=  f
0



Moreover, the existence of

(6) 1i{T P n<x

is demonstrated and the limit distribution is identified in terms of a

double Laplace transform in [18 ]. Also limit laws for A and Nn n

are developed respectively in [19 ] and [3 ]. These assertions are

essentially consequences of the general invariance principle [18]. Our

present aim is to analyze the nature of the limit laws for Mn, An  and

N n Actually the emphasis of this paper is more on deriving relationshipsn

amongst the limit distributions of the variables (3) rather than on

proving their existence. Nevertheless in most cases, we also obtain the

existence of the limiting distributions.

In addition to elaborating the program of the preceeding paragraph

for the case of sums of independent random variables we will also develop

the corresponding results for the case where the approximating processes

are of diffusion type. For simplicity of exposition we assume that

X(t), t > 0 is a birth and death process on the integers; analogous

arguments and constructions apply in the case of random walks on the

integers or diffusion processes on the line. These processes are

characterized as those Markoff processes on the line whose path functions

are "continuous" (see [ 7 ] and [ 17 ]).

A birth and death process is a stationary Markoff process whose

state space are the integers and whose transition probabilities Pij(t)

satisfy the order relations
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I Xt+ o(t) + 1

(7) Pij(t) it + o(t) J = i-

i (- i + i)t + O(t) j = i

where X and pi > 0 (i = 0, + 1, + 2, + 3, ... ). In the one-sided

case, i= 0, i < 0 and the relevant state space reduces to the non-

negative integers.

It is proved by Stone [23 ] that the only non-degenerate limit

processes that arise by renormalization, i.e.

lim c-1 X(g(c)t) = Z(t) t > 0
c -4 00

are necessarily generalized Bessel processes (see section 2). The

existence of the limit entails that i and ji possess growth properties

of special algebraic structure and then g(c) ca L(c) where L(.) is

a slowly varying function (see also [24] and [15]). More specifically, if

it Dn Y- I  ~T Dln Y-
n ' -n 1

(8) n -

1 Ofl 11 ini - Cn -i Cl n

n n -n -n

where

X0 X 1 Xn-i 90  i "" P-n+l

i n n - X-1 -2 "" X-n

7



and the C's, D's, P's and 7's are positive constants. In order to avoid

technical complications and the presence of degenerate distributions

we will henceforth assume

P = 0i and Y = 71

Then

(9) lim c- 1 X(cat) = Z(t)
C - 0

where a = + y. (The hypothesis (8) can be generalized allowing the

introduction of slowly varying functions as multiplying factors

and a corresponding version of (9) is obtained (see [23]). All the

considerations of this paper carry over to this more general setting.

The process Z(t) is a diffusion process on the line in the sense of

Ito and McKean [7 ] whose infinitesimal operator is of the form

(10) Uf(x) = D Dt f(x)

where i:(x) - DIx 7 and t(x) = (see [23] and also [241])

Such processes are labeled Bessel diffusion processes for reasons given

later.

Henceforth, whenever we deal with the case (7) we assume the

relation (8) and hence (9) holds. Under these conditions Stone also

establishes the validity of the invariance principle.

We introduce analogous to (3), the variables

8



(11) M(t),I M*(t)I M +(t), A(t), A(t), A+(t), N(t), N*(t), Y(t)

defined in terms of the process X(t) in the obvious way, for example

(interpreting the notation as indicated earlier)

M(t) = sup x() IX(t) = 0), M+(t) = ( sup x X( )_ 0,0_<_< t
0< <t 0<r <t

Y(t) = t - max(rlX( ) = 0), .etc.

Our analysis concerning (ii) is done analogously to that of

(3). In particular one of the principal results of this paper is to

point out distribution relations amongst the unconditioned variable,

the associated conditioned variable and an appropriate arc sin law.

The results are elaborated for the two cases set forth above

(sums of independent random variables, and diffusion processes), although

it will be apparent to the reader that many of the corresponding results

should be forthcoming for any sequence of approximating stochastic proc-

esses attracted to either a stable process or a Bessel type diffusion

process.

We summarize briefly the contents of the paper. In section 2

we develop various relationships amongst the distribution functions of

the limit laws for the variables (3) and (11). Some extensions are

indicated in section 3. The actual problem of the existence of such

limit laws is discussed in sections 3 and 4. The nature of the limit

9



law for the conditioned occupation time of a half line is described.

Moreover, the nature of the limit laws for random variables of the type

M = max SS= 0)
pn 0<k<pn k n

(12) N * = (N IS = 0)
pn pn n

y = (Y Is= 0)pn pn n

where p < 1 is given. Finally, a brief discussion of the limit laws

for joint random variables amongst the variables (3) is also given.

§ 2. Relationship of Conditioned Limit Laws and Standard Limit Laws

This section is devoted to a discussion of relations amongst

the limit distributions of certain unconditioned random variables and

the same random variables conditioned by a recurrent event. The examples

of (3) and (11) are typical

A. Conditioned occupation time random variable.

We first restrict attention to the process (1) and assume for
it~k

simplicity of exposition that the characteristic function C(t) = E(e )

satisfies the property, as t -4 0,

(13) C(t) - 1 - Djtla, 1 <a < 2, D > 0

We may deduce that the convergence of (2) is valid

and also relation (4) holds [17]. In other words the process S[nt]

belongs to the domain of attraction of the symmetric stable process of

10



index a. Moreover, it is known that

lira Pr n -< - X)6:1 (

un pr~ <1= (x) 1= ~ 3)
n- o Dn_ 1=a

where % (x) is the Mittag-Leffler distribution whose Laplace transform is

fe - su d% (u) E (-s)kI d 5'l ZJ (1 + k)
o 

k=O

Our immediate aim is to determine the nature of the limit
.

distribution of the conditioned variable Nn. The key to this analysisn

is the suggestive random variable relationship

(14) N = N-*
n n-Yn

This expression is, or course, not to be interpreted literally since the

random variables are defined on different probability spaces. The identity

(14) is intended only to motivate the meaningful relationships involving

the corresponding distribution functions of these variables. In fact,

expressing (14) in terms of distribution functions, we have

1

(15) Pr(N < xn D) = PrN (lu) <xn DIS[n(l-u)]:O) duPr(Y < nu)

which is a rigorous formula. Here [n(l-u)] denotes the smallest integer > n(l-u).

Assume now the existence of the limit

(N
(16) lim Pr n < S = 0=C (x)

11



(This will be proved in section 3 under appropriate conditions.)

Passing to the Laplace transform in (15) yields

1*

(17) n( )  f[n(l-u)] (s(l-u)) duPrY < nu)

where

n(Nn
-S(N n/nS) (P *(s) = E(e s n nIs 0).

SPn(x) =-- en

We recall the fact (see (4)) that under the conditions stated

lim Pr -L< =F l 5 -l

n - o n - =1- u)'Y an -*co -- l-6

Proceeding to a limit in (17) leads to the relation

(18) v(s) = sin Af * (s(l-u)6) u5 (1u)5_l du s > 0
IT

0

where c(s), q *( s) are the Laplace transforms of G (u) and *(u)
5

respectively. We can write (18) equivalently in the form

(19) Gw(x) = sin f 1 io (7 = u 5 (1-u) "l du

Let N and N denote the random variables with Laplace

transforms (s) and q*(s) respectively. We may compute the moments

from (18). This yields

12



____ i 1 (r+) -i
(1+r) E((N)r) sin - 0 E((N*) )f u -  (i-u) 1)1 du

which simplifies to

(19) E((N) r! r'(5)

r'(b(r + 1))

The distribution function of the variable N can now be

identified and indeed a direct computation of the moments will verify

x

(20) CV(x) = r(l + 8) f t d%(
0

We may invert the relation (18) and express q) in terms of

p. This amounts, apart from a change of variable, to the Abel inversion

formula. Thus, an obvious change of variable in (18) and some simple

manipulations produce

b sin *s  8 -1
q(s f q (v ) (s - v) v dv

0

The Abel inversion formula [26, p. 401 yields

*8 8-1 v 8 81
(21) *(v)v = - q(s) (v - s) ds

0

By the same devices, the formula (19) can be inverted, thus expressing

Go explicitly in terms of G-.

13



We may establish the relationship (18) also in the case where

the underlying process is of type (7) and satisfies the conditions (8).

It is proved in [ 9] subject to these stipulations that the recurrence

distribution F o(t) of the zero state satisfies

(22) i- Fo(t) At A
00 t a

where a = 0/(+y) (see the notation of (8)).

It is also known [3 ] (cf. [9]) that

(23) li Pr ((t) <X) = G,(x)

and

(24) limPr {Y(t) < u}= Fl_,(u)
t - O

The same reasoning as above shows that

(25) lir Pr fN(t) < xIX(t) = 1 G*(x)
t -+ W [At -

and of course (23), (24) and (25) are connected by the Formula (19).

The limit law established for the conditioned variable of

N(t) is considerably general to the following extent. Consider any

irreducible Markoff chain U(t) (discrete or continuous time) whose

state space are the integers. Let F o(t) be the recurrence time

distribution of the zero state and suppose (22) holds for 1 - F o(t).

14



Let Nl(t) be the occupation time of a finite set of states I during

the time duration 0 < T <t conditioned that at time t, U(t) e E where

E is a prescribed finite set of states. E and I may or may not overlap,

Let NI(t) be the ordinary occupation time of I under no conditioning.

It is known [3) that (23) holds provided A is replaced by an appropriate

constant (essentially a multiple of the stationary measure of the set I).

A slight extension of the previous argument again proves (25) for N*(t).
I

We need not enter into details, The argument of section 4 based on a

consideration of moments also applies to this generalized case.

B. Conditioned Maximum Random Variable.

We begin with the case of the birth and death process (7) under

the hypotheses of (8). As remarked in the introduction, this case is

typical of the situation where the underlying process is of diffusion

type.

Applying the invariance theorem, we conclude that the joint

distribution of

{c-l M(cat), c "1 X(cat)} (a = y)

converges as c - c0 to the joint distribution of

{M z (t), Z(t)

where M (t) = max Z( ). In particular, we conclude that the
z O <t

conditioned distribution law

15



(26) Pr ti--/ < xlx(t) <O}= Ht(.x)

converges to the distribution law Pr(MZ (1) < x I Z(l) < 0) = H(x).

We start with the obvious relation

(27) U(t)M(t) = M*(t - Y(t)) U(t)

(the remark following (14) applies here) where U(t) = 1 if X(t) < 0

and zero otherwise, valid because of continuity of paths.

We postulate the convergence as t -, of

(27a) Hi(x)= Pr t < xIX(t) = 0 to Pr(M_(1) < xZ(l) = 0) = H*(x)

(Some conditions under which the existence of the limit holds will be

given in section 4.)

Now following the method of part A of this section based on

the relation (27), we obtain

sin Ica l*( \ u -l

(28) H(x) = H i/7 udu

where H(') is the distribution function referred to above and a=P/(P+y),

and a = P+Y. Formula (28) can be inverted along the lines of (21).

This expresses H* explicitly in terms of H.

We next turn to the question of evaluating and establishing

the existence of the limit (t -*-) of the quantities

16



(29) Pr(M(t) < xtl/aIx(U) > 0, 0 < u < t, X(o) = 0)

The analysis of (29) is quite simple. We convert the state 0

into a reflecting barrier and consider the associate birth and death

process on the non-negative integers. Let X(t) represent this new

process and M+(t) the corresponding maximum variable. A little reflec-

tion shows that

(30) PrjM(t) < xt(047)IX(u) > 0, 0 < u < t, X(O) = 0)

= Pr(M+(t) < xtlp'"IX+(O) = 0) = Ht(x)

The asymptotic behavior of the coeffiecients in the X +(t) process

obviously satisfy

A + -i DnT-I 1 Cn- 1  (n )
n n 1 ++

n n

According to [24], we know that the process X+(t) c-1 X+(co+Tt

converges to a diffusion process Z+(t) on [0, -) with a reflecting

regular boundary at the origin and infinitesimal operator given by

Af(x) =DI D f(x) x > 0

where

'(x) -r- T '(x) = --

17



The invariance theorem prevails (see [23]) and the limit in (30) is the

distribution function of the maximum

(31) M +(1) = max M +(t)
z 0<t<1

An explicit expression of the distribution law of (31) can

be determined in the following way. Let T be the first passage time
x

starting from the origin of reaching x > 0 for the diffusion process

Z +(t). The Laplace transform of T is identified in [9] (see alsox

Ito and McKean [7]) as the reciprocal of the Bessel function

0s = ((- CDs r

r=0 r -a(

where a = P/P+ The familiar relation

Pr(Mz+(t) > x) = Pr(Tx < t)

serves now to compute the probability law of M +(t).

Consider the relation

(32) M(t) = max(M+(t - Y(t)), U(t) M(Y(t)))

18



(see comment following (14)) where U(t) = 1 if X(t) > 0 and 0 if

X(t) < 0 so that PrLU(t) = 1) = Pr{X(t) > 0). The relation (32) becomes

meaningful when we pass to the corresponding distribution functions and

normalize by t1 . Referring to (27a), the convergence stated by (31)

and using the fact that M(t - Y(t)) and M+(Y(t)) are conditionally

independent given Y(t), then letting t -* we obtain

(33) Pr(Mz(1) < X)

_sin X > I)H +  1x (-A u (1-u)a ' l duX 0 J-u) 1/,u

where H*(x) = Pr(Mz(l) < xJZ(1) = 0), H+(x) = Pr(M z+(l) < x) and

X = lim Pr(X(t) < 0) = Pr(Z(l) < 03.
t -* C

The proof of the existence of

lim Pr(X(t) < 0) X
t -* oo

is simple and its value can be computed as follows. Let n be the sojourn

time of the non-negative axis starting from state 1, i.e., 71 is the

random variable equal to the first passage time from state 1 to -1, whose

distribution function is denoted by F1,_l(t). Similarly let denote

the first passage time from state -1 to state +1. It is proved in [ 9] that

C+

1- F l,.l(t) t
t a  t-*ao

1 - F 1,1(t) C
t a

19



for an appropriate pair of constants C+ , C- > 0. A standard renewal

argument shows that

lim Pr(X(t) <0) = C
-+C +

t-4,W C +C

The preceding analysis exhibited relations of certain limit

laws pertaining to the maximum variable when the underlying process is

of diffusion type. Specifically, we had focused attention on the case

of birth and deathprocesses for ease of exposition. We now turn to

examine the coresponding versions of these theorems where X(n) is the

process (1) obeying the restrictions (13).

If the summands ti obey the property that Pr(fi < -2) = 0

(recall that ti are integer valued), then the paths S n(M are

"continuous" in movement to the left. In this case the arguments leading

to (28) apply mutatis mutandis.

This situation is only possible if C = 2 and then

S[nt] is in the domain of attraction of the Brownian motion process.

The expression (28) becomes

(34) Pr(MZ(l) < xIZ(l) <O = f Pr(MZ(l) < x/v/IZ(l) = 0) u2 (1-u) 2 du
0

and Z(t) is standard Brownian motion. Since the left hand side is

x _ 2/2
F f e dt an immediate verification shows that

0

PrM(1) <xz(1) = o = 1 -e x /

20



The methods employed above in deducing (34) depend on the

validity of the convergence.

{M
(35) lim Pr -n fXIS n = = PrfMz() <xlz(1) = 0)

n -4oo

which may be established subject to some suitable mild restrictions with

the aid of the invariance principle. The formula (34) can also be

derived readily by direct considerations of Brownian motion.

In the general case where ti has finite variance a and

therefore S[nt]/af/n converges to Brownian motion we would expect (35).

Undoubtedly the invariance principle also applies to the tied down

approximating process (S[nt]/cr, S[nt] = O) which converges to

Brownian motion Z(r), 0 < T < t conditioned so that Z(t) = 0 and

then (35) obtains by considering the maximum functional. An example of

this sort was studied in [4.11

Returning to the case of (13) and 1 <a < 2, we postulate that

(M
lim Pr - a 5x IS 0n  }R(x)

Dn

lir Pr xS i  O, =i, ... ,}= (x)

both exist. It is known [ 19 ] that

nn

21



Moreover, under the assumption (13) it follows easily that

(38) lim Pr(S < 0) =1nn-2

Following the method of (33) we obtain the relation

(39) R (x) = sin f R23'1 +R, u (l-u)5- 1 du

21 f (1-u) u+ 1

a= 1 -

Of course, (39) can be interpreted as a relation amongst certain func-

tionals defined on the paths of the symmetric stable process Z(t)

of order a. Explicitly

(4o) Ra(x) = Pr(M (1) < xl, R *(x) = Pr(M (1) < xIl(l) = 0.

and %(x) = Pr(M e(I) < xlZ( ) / 0, 0 < T <t)

In this general context we do not have a proof of (36) although

we believe they are correct.

C. Conditioned Limit Laws for S
n

In this part we are interested in the limit probability distri-

bution of

(41) Pr n <xM> M l}

where Sn is the process (1). We will assume that E(gi) = 0,

22



(42) lir Pr n<x : R,(x)

and

(43) lim Pr(S > O = (0 < x < 1)
n-*n

n -4 o

The analysis of this section will use only the assertions (42) and (43).

These are certainly satisfied if (13) holds and then X = 1/2.

We introduce the recurrent event E :M >M i.e., we

say E occurrs at time n if Mn >Mn_ 1 . Let (Pn n=l be the

probability distribution of the time T of the next occurrence of the

event E. The generating function of T is given in [11:

(44) E(x) =1- exp kl krS

k=1. k

Applying a standard Abelian type argument to (44) using (43) (actually

Cesaro order convergence in (43) would suffice) we deduce

(45) 1 - E(x T) = (l-x)% L(1 1 x) x t 1

where L(") is a slowly varying function. The slowing varying function

L(,) arises by the following considerations. We assert that the

function

O k
L(_-) = exp - E -- a)0 <x <

2k=l

23



is slowly varying whenever lir ak = 0.
k *

Proof. Consider

~c)l= exp - ) [ k - (U1 )j I ak  (0 < c fixed)

Choose k large enough so that JakI < for k > K. Then determine

u sufficiently large so that

max i(-)) <6
l<k<K I cu -

Cu-i
Since -1 is an increasing function of its argument and log cu - log ucu

is bounded, we obtain for u large enough, the estimate

e _< _< e3E

verifying that L(.) is a slowly varying function as claimed.

Now we introduce the variable

(46) U = time elapsed since the last time E occurred countedn

from time n.

Appealing to the theorem of Dynkin, Lamperti [5 ] [12], we have

lim Pr{- <4. = F (u)

n+ i -
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We start with the identity:

(47) M . -- wng(4)

SMn U n-U (see the comment following (14)).

The method from here on proceeds identically to that of part A.

If we postulate the existence of the limit

(48) lir Pr 4 a':S xIM n>M = Sa(x)
n -- An

(We will discuss the truth of (48) in section 4), then analogous to

(19), we obtain

(49) Ra(x) = sin f 1 Sa x u-% (1-u)X-1 duo (1-u) I/ '

Along the lines of (21) we can invert (49) and express Sa (x) in terms

of Ra(x). Executing these manipulations, we obtain

-1 S ( - 1/la ) d v 1/al l-1

(50) v v (si-) T_ f (x/ (v-x) dx
0

It is a familiar trick to rewrite (41) in the form

(51) Pr{ a:< x IM n > Mn_ 1

Pr~s n <xnnl/a s > s >S>o

- n /a n >Sn-l' Sn> Sn-2' > 0)

Pr[Xn > 0, Xn  Xn-i O, .. X +n + + X1 > 0]

= PrS n < xDnl/ S1 > O, , Sn >o)
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This proves under the conditions (42) and (43)

(52) ir PrfSn < xDnl/aSI>O, ... , Sn > 0) = Sa(x)
n -+ c

Consider now the quantity

(53) Pr(Mn < xDnl//ajSn Mn)

Again we postulate (42) and (43). Clearly Pr(Sn = 0) -4 0 (n- c)

and therefore

lim Pr(S 0) =>
n -- .o

We say that the event B occurs at time n if S = M . Let T be then n

time of the next occurrence of the event E. Baxter [ 1] has determined

the generating function of T:

00k

k=l

Again (45) follows and subsequently (49) and (50) (the factor L(-) may

be different but it is still slowly varying). To sum up: If (42) and

(43) hold then

(5) PrMxDnl/IS M _P( <xnl/zIS1_ > O} 0(54) Pr[M n < x~ sn= M n }  Pr(S n < >~ O/l . , S 2 ? 0> , S n ->0

and the limit in (54) is the function S (x) that appears in (52).
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We close this section citing the following example of the

preceding theory. Suppose a = 2, X = 1/2 and R2(x) = 7 fx e-92 /2 dt.
0

This will be the case in particular when g satisfies E(g) 0 0

0 < E(q 2 ) = a2 < _. Comparing (49) with (34) we infer S 2(x) 1 - e-2/2

(0 < x <) (cf. Spitzer [22] footnote, page 162).

D. Conditional Occupation Time of a Half Line.

Let X(t) be a Markoff process with the following structure.

The states of the process are divided into two classes I+ and I ,

except for one special state a. The assumptions are that occupation of

state a is a certain recurrent event and if X(t1 ) E I+ and X(t2 ) E I-,

then for some intervening time (between t and t2) , X(t) = a.

An illustration of the above set up arises if X(t) is a birth

and death process on the integers (or random walk if time is discrete)

and then put I+ = (0, -), I- = (--, 0) and a = (0).

Let N+(t) denote the occupation time up to time t of the

set I+; N_(t) is defined similarly. Let F(t) be the recurrence time

distribution of the state a. We will assume throughtout this section

(55) 1 - F(t) = - L(t) (0 < a < 1)

where L(t) is slowly varying.

Lamperti [13] (see also Tak~cs [25] who treats a more general

situation) has determined all possible limit laws for

(56) N(t) t -*
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The class of limit distributions of (56) comprise a two parameter

family which are described explicitly in [131.

Our objective in this section is to relate the limit laws of

(57) N+(t)

t

with those of(56)where N+(t) is the occupation time up to time t of

I+ conditioned that X(t) = a.

The point of view is the same as before. We postulate the

existence of the limit law of (57) and determine its form. It is an

open problem as to the precise conditions under which N*(t)/t admits a

limit. Presumably, the same hypotheses which yield results in the case

(56) will work here as well.

To analyze (56) we start with the relations:

(58) N+(t) = N+(t - Y(t)) + V(t) Y(t)

(the comment following (14) applies here), where

V(t) {1 if X(t) C I+

0 if X(t) e I

The occupation Na(t) of state a in the time interval is of the order

of magnitude toL(t) (0 < a < 1) and this tends to zero when normalizing

by t . Therefore it is irrelvant whether or not we include the value

N (t) in N+(t). If we discard occupations of the state a then the

realizations of the process have the following form:
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The process visits I+ and I- alternately. Let Ei liy

t2' 12' ... be the successive sojourn times spent in I+ and I starting

from state a. Since the states I+ and I communicate through state a,

it is clear that Oiiil are independent and identically distributed;

similarly for (Ti i= Let A(E) and B(TI) denote the distribution

functions of E and n, respectively.

We postulate that

1 - A(t)= A t > 0
taL~t)

S59)

BLt) =0B (0 < C < 1, A > 0, B > 0)

This is consistent with (55) and in fact it is an easy matter to express

F(t) in terms of A(t), B(t) and the quantities p = the probability

that on leaving state a the process moves to I+(see [13]). If the

asymptotic growth properties in (59) were not of the same order of

magnitude then the limit law of (56) would be degenerate.

Under the conditions (59) it is an easy matter to show (a renewal)

argument) that

A =

(60) lim Pr(V(t) = i= A X

t -* 0B

Expressing (58 in terms of Laplace transforms of the corresponding

distribution functions, the relation becomes meaningful and since N+(t-Y(t))

and Y(t) V(t) are conditionally independent given Y(t), we obtain

(s) = , t(lu)(s(l-u)) [E(e -SV(t)u)] du Pr(Y(t) < tu), s > 0
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where

-(N~t1t) *- s(N+( t) It)
(s) - E(e 5(N+(t)t), **(s) = E(e iX(t) = )

Proceeding to a limit (t -4-*) we obtain

(61), 4(s) =sin f 1 (s(l-u)) [Xe" s u + (i-X)] u-a(-u)a ' 1 du
it

0

(s) = rn (s) 4*(s) = lim *(s)
t - t - 00 t

The change of variable s(l-u) = v converts (61) into a

convolution form. We compute a second Laplace transform yielding

(62) (z) sin * _ _(la) r(l-a)](62)* (1+z) 1-a +  1-ax

where

" -z d. (x)
(63) (Z) = I e- (s) ds f Ez(x

0 0

and

(N+(t)
E (x) = lim Pr--- <

x t -00 I

.0 dE (m - x)
(64) *(z) = f eZS 4(s) a ds = r(a) a

o (z+x)a

and

* N (t)
%(x) = lim Pr < x X(t)

St -0

30



Lamperti has explicitly determined (63) in [13]. His formula is

1 dE (x) (z+l)a-1 + z

(65) z+x (z+l)a + 1 z

In the symmetric case (A = B; X = 1/2). On comparing (65) and (62) we

deduce

(66)a(z) o dE(x) 2

r(66)7 (z+x) a [(Z+l)a + za]

Now, if we specialize even further, set a = 1/2 then

ldE1  ) 2/ 2 2 _ =2MJ V;

whose inversion is clearly E 1 2 (x) = x. G. Latta (private communication)

has succeeded in inverting (66). He gives the formula

e(l+x) 2-a 1 (x-t)a-i t_-___ - dt

where e () is the density function of E*().

§3 Moment Methods

One of the questions left open above is: What are the exact

circumstances under which N does have a limiting distribution. Itn

seems plausible that N should have a limiting distribution if andn

only if N does. A full discussion of this matter will have to ben

postponed to a later work.
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It is possible to give a sufficient condition for N to have
n

a limiting distribution which takes care of most examples of interest

as follows.

Consider a certain, null-recurrent event, on the positive

integers. Let

1 if a recurrence takes place at time n
U 0 otherwise

We will assume that u = EU behaves like a power of n for large n.n n

In order to arrange the constants conveniently we make the following

specific assumption.

Assumption I. un ~ ,as n-* (0 <a < 1).
F (a Oa~)

One can also carry through the analysis with the addition of

a slowly varying factor in the statement of assumption I. We leave the

details to the reader.

It is elementary to verify that under assumption I, N/An 

converges in law to the distribution described in (19). To do this we

compute the moments of N /Ana as follows

E((Ul + U2+-+U KIU 1

K! E(U U . . U )/E(U)

K aK i ... n nA n 1 < i I < i 2 <''.<iK< n 1 2 K

K: K! E(UilU i _ ... U i nUn-i)IF(Un
A n 1 < il< i <°"<i <n 1 2 1 K K-1 K
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1dx I .. dxK

j- l- I- (by assumption I)
(a) x1 (x2-xl) • (l_xk)l-

o< x < x <..< xK < 11
- x1 <2 <K-

K! 1 dx r(a) K.

- r Jo (l-x) l-Ka l-a - r(a(K+l))

K = 1, 2, ...

These moments agree with formula (19).

The computation goes over in the same way in a slightly

more general setting. Suppose that 0, i1 , ... , i r  are

states belonging to the same null class in a denumerable Markov chain.

At time 0 the system is in state 0. U W is the indicator random
n

variable which is 1 at time n if the system is in state i and is

0 otherwise. State 0 may be one of il, ... , ir  but the latter are

distinct. The analogue of assumption I is that the transition probabilities

satisfy

P(n - (i, j = 0, i1 , J 0 < a < 1.

nn
Thenoa) + . + u(O) 0the occupation time of 0 we have

liUE KU10) + ... + U(0)j ullKF (r) =i) =F(a%) K!
+*n* .. U ..

lim n n n F(a(K+I))n- ~ n~(a) n~

exactly as before.

Another extension is possible as follows. Let 0 < < X and

let N n,Xn  count the number of times that state 0 is occupied in
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the time interval (4n, Xn). Then under the assumptions stated above

Ii x K(i ) (jr)irna E n Xino ) 1 "'" + -- a
n-.E) -

_)- n + ~n -4CO Y\cr. (a)a n. ).I

!7 jI (X-x) -Ka 1-a

With some computations which we omit here it can be shown that this

last integral equals

K! r(a) 0( -0)l [X- i(l+z)] K dz(67 r(a(K+l)) I 1-a
r(a) r(l-a) (l - t(l+z)) za(l+z)

which displays the limiting distribution as that of a product of two

independent random variables, one having the modified Mittag-Leffler

distribution (20), the other having density function

1-( a 0 < z < (X -

r() r(-) (l - (i+z)) z(l-z)

(This representation as the distribution of a product of random variables,

of course, is not unique.)

A direct explanation of this fact which displays some interesting

"conditioned arc sin laws" can be made as follows. For simplicity, we

place ourselves within the context of the certain, null-recurrent event

discussed at the beginning of the section and we suppose that Assumption I

holds. Consider the random variables

Y = time elapsed since last recurrence, measuring from time n,n

Z = time to elapse until next occurrence measuring from time n.
n



Let 0 < p < X. A straightforward computation shows that under Assumption I

n -i, P ~
.n o (p xn ' I

=li P ((%-) ) =

n - p 
4I

a 1-at dy
r(a) r(1-a)o ( I i - E (1-y)

The Brownian motion version of this fact had been observed by Levy [16, Ohap. 6)

for c = 1/2.

Now, to find the limiting distribution of N nXn/n a conditioned

on Un= 1, by a different method from the one leading to (67), we proceed

as follows.

E E n kn = d -n-k_< zK n 
n 1

Nnx-&+z- )K U.Xn) d aP(4n< z n

=(x-l)/E( ALu~ '

,(a) - IIX - P(l+.)] dz

K r(a(+l))o .r) r(i-a) (i - (i+z) la z

r ~ F K 1 7r a ) r ~ -a 1 , +)X- z ( l + z )

as n - " .o
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§4. Convergence problem and related open questions

We close this paper with some general remarks concerning the

general convergence question left unsettled for some of the variables

studied in section 2.

1. If the underlying process of diffusion type, i.e., random walk,

birth and death or bona fide diffusion, then a direct proof can be given

for the convergence of

Pr(M(t) < xtl/alx(t) = 0)

under the conditions (8).

We sketch the analysis for the case of the birth and death

symmetric process, i.e., we assume Pij(t) = P J,_i(t).

The local theorem proved in 241] asserts

(68) Pr(X(t) = 0) - ct a 1  t -

Now consider the Joint probability

t _

(69) Pr(M(t) > tl/ax, X(t) = 0) = ft P(t-T; [tl/axJ, 0) dP(Ttl/a =

([ ] symbolizes, as customary, the integral part of) the last resulting

because of the continuity of paths. Here, P(t,x,y) denotes the transition

function of the underlying process and T is the first passage timey

variable from 0 to y. It is proved in [24] (see also [ 9]) that Tn/na
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converges in law (this fact also follows by the invariance principle) and

also

(70) lir t 1 -a P(tu, tl/axO) = p(u,x,O)

is valid uniformly in x for each u where p is the density function

of the symmetric Bessel process (10). Using the limit relations, (68) and (70)

in (69), we infer the convergence of

lim Pr(M(t) > t1/aXIX(t) = 0)
t -+ W

If the underlying process is a sum of independent identically

distributed random variables like (1) under the conditions that i are

symmetrically distributed then the convergence of

Pr[M(n) < nl/axISn = 0)

can be deduced by similar considerations using some recent results of

Kesten [10]. The details are quite laborious.

2. The convergence problem concerning the variables of part C of

section 2 in the case where E(tI) = 0 and E(E 2 ) = a2 < _ can be dealt

with by standard Tauberian arguments applied to moments using the familiar

generating function relations of Baxter [1 1. The general problem is open.

The convergence problem is also unsettled in the case of the conditional

occupation time variable of a half line. However, if the underlying

process is of diffusion type (8) then the convergence can be established,

with the aid of an invariance principle.ff



It would be worthwhile to develop the invariance principle for

the general case of stochastic processes converging to a stable or Bessel

diffusion process Z(t), tied down so that Z(l) = 0. In the case of the

Bessel process (under the conditions (8)) this probably can be done by

the methods indicated in part 1 of this section. This permits one to assert

the convergence of various functionals, in particular, the existence of

limit laws for the variables of sections 2, parts A, B and D. The analysis

presented there identifies the actual limit law. The development of the

invariance principle in the case of conditioned sums of independent random

variables attracted to an appropriate conditioned stable process is open.
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